浏览量:157

参考

[1]      Joseph O'Rourke. Computational geometry in C. Cambridge university press, 1998.

[2]      Stefan Gottschalk. "Collision queries using oriented bounding boxes." PhD diss., The University of North Carolina, 2000.

[3]      Donald R. Chand, and Sham S. Kapur. "An algorithm for convex polytopes."Journal of the ACM (JACM), vol.17, no.1, pp.78-86, 1970.

[4]      Franco P. Preparata, and Michael Ian Shamos. Computational geometry. an introduction. Texts and Monographs in Computer Science, New York: Springer, 1985.

[5]      Thomas H. Cormen, et al. Introduction to algorithms. Vol. 2. Cambridge: MIT press, 2001.

[6]      Ray A Jarvis. "On the identification of the convex hull of a finite set of points in the plane." Information Processing Letters, vol.2, no.1, pp.18-21, 1973.

[7]      Ronald L Graham. "An efficient algorithm for determining the convex hull of a finite planar set." Information processing letters, vol.1, no.4, pp.132-133, 1972.

[8]      Franco P. Preparata, and Se June Hong. "Convex hulls of finite sets of points in two and three dimensions." Communications of the ACM, vol.20, no.2, pp.87-93, 1977.

[9]      Kenneth L. Clarkson, and Peter W. Shor. "Applications of random sampling in computational geometry, II." Discrete & Computational Geometry, vol.4, no.1, pp.387-421, 1989.

[10]  C. Bradford Barber, David P. Dobkin, and Hannu Huhdanpaa. "The quickhull algorithm for convex hulls." ACM Transactions on Mathematical Software (TOMS), vol.22, no.4, pp.469- 483, 1996.

[11]  Philip Schneider, and David H. Eberly. Geometric tools for computer graphics. Morgan Kaufmann, 2002.

[12]  Qhull. "The Geometry Center Home Page." website, <http://www.qhull.org/>, last access in October,2014.

[13]  CGAL Open Source Project. "Computational Geometry Algorithms Library", website, <https://www.cgal.org/>, last access in October,2014.

[14]  A. M Day. "The implementation of an algorithm to find the convex hull of a set of three- dimensional points." ACM Transactions on Graphics (TOG), vol.9, no.1, pp.105-132, 1990.

[15]  William F Eddy. "A new convex hull algorithm for planar sets." ACM Transactions on Mathematical Software (TOMS), vol.3, no.4, pp.398-403, 1977.

[16]  Alex Bykat."Convex hull of a finite set of points in two dimensions." Information Processing Letters, vol.7, no.6, pp.296-298, 1978.

[17]  Alex M Andrew. "Another efficient algorithm for convex hulls in two dimensions." Information Processing Letters, vol.9, no.5, pp.216-219, 1979.

[18]  David G. Kirkpatrick, and Raimund Seidel. "The ultimate planar convex hull algorithm?." SIAM journal on computing, vol.15, no.1, pp.287-299, 1986.

[19]  Dan Sunday. "The Convex Hull of a Planar Point Set." website, <http://geomalgorithms.com/ a10-_hull-1.html>, last acess in October, 2014.

[20]  Timothy M Chan. "Optimal output-sensitive convex hull algorithms in two and three dimensions." Discrete & Computational Geometry, vol.16, no.4, pp.361-368, 1996.

[21]  Michael Kallay. "The complexity of incremental convex hull algorithms in Rd." Information Processing Letters, vol.19, no.4, pp.197, 1984.

spacer

Leave a reply